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1 Abstract
Current pharmacovigilance systems rely primarily on spontaneous adverse event reporting, which
suffers from significant underreporting, lack of denominator data, and inability to quantify effect
sizes. Meanwhile, the proliferation of wearable devices, health apps, and patient-reported outcomes
has generated unprecedented volumes of longitudinal real-world data (RWD) that remain largely
untapped for safety and efficacy signal detection.

We present a comprehensive two-stage framework for generating validated outcome labels
with quantitative effect sizes:
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Stage 1 (Signal Detection): Aggregated N-of-1 observational analysis8,9 integrates data from mil-
lions of individual longitudinal natural experiments. The methodology applies temporal precedence
analysis with automated hyperparameter optimization, addresses six of nine Bradford Hill causality
criteria through a composite Predictor Impact Score (PIS), and produces ranked treatment-outcome
hypotheses at ~$0.100 (95% CI: $0.030-$1.00) per patient.

Stage 2 (Causal Confirmation): High-priority signals (top 0.1-1% by PIS) proceed to pragmatic
randomized trials following the RECOVERY/ADAPTABLE model10,11. Simple randomization
embedded in routine care confirms causation at ~$500 (95% CI: $400-$2.50K) per patient (82x (95%
CI: 50x-94.1x) cheaper than traditional Phase III trials) while eliminating confounding concerns
inherent in observational data.

The complete methodology includes: (1) data collection from heterogeneous sources; (2) temporal
alignment with onset delay optimization; (3) within-subject baseline/follow-up comparison; (4)
Predictor Impact Score calculation operationalizing Bradford Hill criteria; (5) Trial Priority Score for
signal-to-trial prioritization; (6) pragmatic trial protocols for causal confirmation; and (7) validated
outcome label generation with evidence grades.

This two-stage design addresses the fundamental limitations of purely observational pharmacovigi-
lance (confounding, self-selection, and inability to prove causation) while maintaining the scale and
cost advantages of real-world data. The result is a complete pipeline from passive data collection
to validated treatment rankings, presented as both scientific methodology and implementation
blueprint for next-generation regulatory systems.

Keywords: pharmacovigilance, real-world evidence, N-of-1 trials, pragmatic trials, causal inference,
Bradford Hill criteria, treatment effects, validated outcome labels, comparative effectiveness, precision
medicine

2 System Overview: From Methodology to Product
This paper describes the statistical methodology powering a patient-facing platform best understood
as “Consumer Reports for drugs” - a searchable database where patients can look up any
condition and see every treatment ranked by real-world effectiveness, with quantitative outcome
labels showing exactly what happened to people who tried each option.

2.1 What Patients See

When a patient searches for their condition, they see:

1. Treatment Rankings: Every option (FDA-approved drugs, supplements, lifestyle interven-
tions, experimental treatments) ranked by effect size from real patient data

2. Outcome Labels: “Nutrition facts for drugs” showing percent improvement, side effect rates,
and sample sizes - not marketing claims

3. Trial Access: One-click enrollment in available trials, from home, via any device
4. Personalized Predictions: Based on their health data, which treatments work best for

people like them

2.2 What Companies See

Any company - pharmaceutical, supplement, food, or intervention - can register a treatment in
minutes at zero cost:
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Figure 1: Treatment Rankings Example - Patients see all treatments ranked by real-world effectiveness
for their condition
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1. Instant Registration: No approval bottleneck; treatment appears in search results immedi-
ately

2. Zero Trial Cost: Patients pay for treatment (covering manufacturing); the platform handles
data collection and analysis

3. Automatic Liability Coverage: Built into the platform
4. Free Clinical Data: Every patient who tries the treatment generates outcome data worth

$41K (95% CI: $20K-$120K)/patient in traditional trials

2.3 Where This Methodology Fits

The Predictor Impact Score (PIS) described in this paper is the engine that powers treatment
rankings. It transforms raw patient data into the ranked, quantified outcome labels that patients
and clinicians use to make decisions. The two-stage pipeline ensures that:

• Stage 1 (this methodology) generates treatment rankings from millions of real-world observa-
tions at ~$0.100 (95% CI: $0.030-$1.00)/patient

• Stage 2 (pragmatic trials) confirms causation for high-priority signals at ~$500 (95% CI:
$400-$2.50K)/patient

The result is a self-improving system where every patient’s experience helps the next patient make
better decisions - transforming the current bottleneck of 1.90M patients/year (95% CI: 1.50M
patients/year-2.30M patients/year) annual trial participants into a platform where anyone can
contribute to medical knowledge.

For the complete user-facing vision, see A Decentralized Framework for Drug Assessment.

3 Introduction

3.1 The Human Cost of the Current System

Every year, 55.0M deaths/year (95% CI: 46.6M deaths/year-63.2M deaths/year) people die from
diseases for which treatments exist or could exist. The tragedy is not that we lack medical knowledge.
It’s that our system for generating and validating that knowledge operates at a fraction of its
potential capacity.

Consider: a treatment that could save lives today takes an average of 8.2 years (95% CI: 4.85
years-11.5 years) to complete Phase 2-4 clinical trials after initial discovery. During this delay,
people die waiting. Since 1962, regulatory testing delays for drugs that were eventually approved
have contributed to an estimated 98.4M deaths (95% CI: 58.2M deaths-138M deaths) preventable
deaths, more than all wars and conflicts of the 20th century combined.

This is not an argument against safety testing. It is an argument for better safety testing: faster,
cheaper, more comprehensive, and continuously updated with real-world evidence rather than static
pre-market snapshots.

The framework presented here could eliminate this efficacy lag for existing treatments while
simultaneously enabling continuous discovery of new therapeutic relationships. The technology
exists. The data exists. What remains is the institutional will to deploy it.
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3.2 The Pharmacovigilance Gap

Modern pharmacovigilance (the science of detecting, assessing, and preventing adverse effects of
pharmaceutical products) faces fundamental limitations:

Spontaneous Reporting Systems (e.g., FDA FAERS, EU EudraVigilance):

• Estimated 1-10% of adverse events are reported12

• No denominator data (cannot calculate incidence rates)
• Cannot quantify effect sizes or establish causality
• Significant reporting lag (months to years)
• Subject to stimulated reporting and notoriety bias

Pre-Market Clinical Trials:

• Limited sample sizes (typically hundreds to low thousands)
• Short duration (weeks to months)
• Homogeneous populations (exclusion criteria eliminate comorbidities)
• Controlled conditions unlike real-world use
• Cannot detect rare or delayed adverse events
• Cost: Average Phase III trial costs $20M and takes 3+ years4

Post-Market Studies:

• Expensive and time-consuming
• Often industry-sponsored with potential conflicts
• Limited to specific questions rather than comprehensive monitoring

3.3 The Real-World Data Opportunity

The past decade has seen explosive growth in patient-generated health data:

• Wearable devices: 500+ million users globally tracking sleep, activity, heart rate13

• Health apps: Symptom trackers, mood journals, medication reminders
• Connected health platforms: Comprehensive longitudinal health records
• Patient-reported outcomes: Systematic symptom and quality-of-life tracking

This data is characterized by:

• Longitudinal structure: Repeated measurements over months to years
• Natural variation: Patients modify treatments without experimental control
• Real-world conditions: Actual usage patterns, not controlled settings
• Scale: Millions of potential participants

3.4 Our Contribution

We present a framework that transforms real-world health data into actionable pharmacovigilance
intelligence:

1. Quantitative Outcome Labels: For each treatment, generate effect sizes (percent change
from baseline) for all measured outcomes

2. Treatment Rankings: Rank treatments by efficacy and safety within therapeutic categories
3. Automated Signal Detection: Identify safety concerns (negative correlations) and efficacy

signals (positive correlations)
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4. Bradford Hill Integration: Composite scoring that operationalizes causal inference
criteria14,15

5. Scalable Implementation: Analyze millions of treatment-outcome pairs automatically

This is not a replacement for RCTs but a complement, providing continuous, population-scale
monitoring that can:

• Generate hypotheses for experimental validation
• Detect signals missed by spontaneous reporting
• Quantify effects that RCTs can only describe qualitatively
• Enable personalized benefit-risk assessment

Multiple meta-analyses demonstrate that well-designed observational studies produce effect sizes
concordant with randomized controlled trials, supporting the validity of real-world evidence for
hypothesis generation:

4 Data Collection and Integration

4.1 Data Sources

Our framework integrates data from multiple sources, each contributing different variable types:

Source Category Examples Data Types

Wearables Fitbit, Apple Watch,
Oura Ring, Garmin

Sleep, steps, heart rate, HRV

Health Apps Symptom trackers,
mood journals

Symptoms, mood, energy,
pain

Medication Trackers Medisafe, MyTherapy Drug intake, dosage, timing
Diet Trackers MyFitnessPal,

Cronometer
Foods, nutrients, calories

Lab Integrations Quest, LabCorp APIs Biomarkers, blood tests
EHR Connections FHIR-enabled systems Diagnoses, prescriptions,

vitals
Manual Entry Custom tracking Any user-defined variable
Environmental Weather APIs, air

quality
Temperature, humidity,
pollution

4.2 Variable Ontology

Variables are organized into semantic categories that inform default processing parameters:

Category Examples Onset Delay Duration Filling

Treatments Drugs,
supplements

30 min 24 hours Zero

Foods Diet, beverages 30 min 10 days Zero
Symptoms Pain, fatigue,

nausea
0 24 hours None
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Category Examples Onset Delay Duration Filling

Emotions Mood, anxiety,
depression

0 24 hours None

Vital Signs Blood pressure,
glucose

0 24 hours None

Sleep Duration,
quality, latency

0 24 hours None

Physical
Activity

Steps, exercise,
calories burned

0 24 hours None

Environment Weather, air
quality, allergens

0 24 hours None

Physique Weight, body fat,
measurements

0 7 days None

4.3 Measurement Structure

Each measurement includes:

Measurement {
variable_id: int // Reference to variable definition
user_id: int // Anonymized participant identifier
value: float // Numeric measurement value
unit_id: int // Standardized unit reference
start_time: timestamp // When measurement was taken
source_id: int // Data source for provenance
note: string (optional) // User annotation

}

4.4 Unit Standardization

All measurements are converted to standardized units for cross-source compatibility:

• Weights → kilograms
• Distances → meters
• Temperatures → Celsius
• Dosages → milligrams
• Durations → seconds
• Percentages → 0-100 scale
• Ratings → 1-5 scale (normalized)

5 Mathematical Framework
The short version: We track what people take (treatments, supplements, foods) and how they
feel (symptoms, mood, energy) over time. Then we look for patterns: “When people take more of
X, does Y get better or worse?” We account for the fact that treatments take time to work (onset
delay) and their effects fade (duration of action). The math below makes this rigorous.
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Figure 2: Effect sizes from observational studies vs. randomized trials show strong concordance for
mortality outcomes
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Figure 3: Across multiple clinical domains, observational and randomized effect sizes track closely
12



5.1 Data Structure

For each participant 𝑖 ∈ {1, ..., 𝑁}, we observe time series of predictor variable 𝑃 (e.g., treatment)
and outcome variable 𝑂 (e.g., symptom):

𝑃𝑖 = {(𝑡𝑃
𝑖,1, 𝑝𝑖,1), (𝑡𝑃

𝑖,2, 𝑝𝑖,2), ..., (𝑡𝑃
𝑖,𝑛𝑖

, 𝑝𝑖,𝑛𝑖
)}

𝑂𝑖 = {(𝑡𝑂
𝑖,1, 𝑜𝑖,1), (𝑡𝑂

𝑖,2, 𝑜𝑖,2), ..., (𝑡𝑂
𝑖,𝑚𝑖

, 𝑜𝑖,𝑚𝑖
)}

where 𝑡 denotes timestamp, 𝑝 denotes predictor measurements, and 𝑜 denotes outcome measurements.
Critically, timestamps need not be aligned. Our framework handles asynchronous, irregular sampling.

5.2 Temporal Alignment

5.2.1 3.2.1 Onset Delay and Duration of Action

Treatments do not produce immediate effects. We define:

• Onset delay 𝛿: Time lag before treatment produces observable effect
• Duration of action 𝜏: Time window over which effect persists

Constraints:
0 ≤ 𝛿 ≤ 8,640,000 seconds (100 days)

600 ≤ 𝜏 ≤ 7,776,000 seconds (90 days)

5.2.2 3.2.2 Outcome Window Calculation

For a predictor measurement at time 𝑡, we associate it with outcome measurements in the window:

𝑊(𝑡) = {𝑡𝑗 ∶ 𝑡 + 𝛿 ≤ 𝑡𝑗 ≤ 𝑡 + 𝛿 + 𝜏}

The aligned outcome value is computed as the mean:

̄𝑜(𝑡) = 1
|𝑊(𝑡)|

∑
𝑡𝑗∈𝑊(𝑡)

𝑜𝑗

5.3 Pair Generation Strategies

We employ two complementary strategies depending on variable characteristics:

5.3.1 3.3.1 Outcome-Based Pairing (Predictor has Filling Value)

When the predictor has a filling value (e.g., zero for “not taken”), we create one pair per outcome
measurement:

For each outcome measurement (t_o, o):
window_end = t_o - �
window_start = window_end - � + 1

13



predictor_values = measurements in [window_start, window_end]

if predictor_values is empty:
predictor_value = filling_value // e.g., 0

else:
predictor_value = mean(predictor_values)

create_pair(predictor_value, o)

5.3.2 3.3.2 Predictor-Based Pairing (No Filling Value)

When the predictor has no filling value, we create one pair per predictor measurement:

For each predictor measurement (t_p, p):
window_start = t_p + �
window_end = window_start + � - 1

outcome_values = measurements in [window_start, window_end]

if outcome_values is empty:
skip this pair

else:
outcome_value = mean(outcome_values)
create_pair(p, outcome_value)

5.4 Filling Value Logic

5.4.1 3.4.1 Filling Types

Type Description Use Case

Zero Missing = 0 Treatments (assume not taken)
Value Missing = specific constant Known default states
None No imputation Continuous outcomes
Interpolation Linear interpolation Slowly-changing variables

5.4.2 3.4.2 Temporal Boundaries

To prevent spurious correlations from extended filling periods:

• Earliest filling time: First recorded measurement (tracking start)
• Latest filling time: Last recorded measurement (tracking end)

Pairs outside these boundaries are excluded. This prevents filling zeros for a treatment before the
participant started tracking it.

5.4.3 3.4.3 Conservative Bias

Our filling strategy is deliberately conservative:

• Zero-filling for treatments assumes non-adherence when no measurement exists

14



• This biases toward null findings (attenuated correlations) rather than false positives
• True effects must overcome this conservative bias to appear significant

5.5 Baseline Definition and Outcome Estimation

5.5.1 3.5.1 Within-Subject Comparison

For each participant 𝑖, we compute the mean predictor value:

̄𝑝𝑖 = 1
𝑛𝑖

𝑛𝑖

∑
𝑗=1

𝑝𝑖,𝑗

We partition measurements into baseline and follow-up periods:

Baseline𝑖 = {(𝑝, 𝑜) ∶ 𝑝 < ̄𝑝𝑖}

Follow-up𝑖 = {(𝑝, 𝑜) ∶ 𝑝 ≥ ̄𝑝𝑖}

This creates a natural within-subject comparison:

• Baseline: Periods of below-average predictor exposure
• Follow-up: Periods of above-average predictor exposure

5.5.2 3.5.2 Outcome Means

𝜇baseline,𝑖 = 𝔼[𝑜 ∣ 𝑝 < ̄𝑝𝑖]

𝜇follow-up,𝑖 = 𝔼[𝑜 ∣ 𝑝 ≥ ̄𝑝𝑖]

5.6 Percent Change from Baseline

The primary effect size metric:

Δ𝑖 =
𝜇follow-up,𝑖 − 𝜇baseline,𝑖

𝜇baseline,𝑖
× 100

Advantages:

• Interpretability: “15% reduction in pain” is intuitive
• Scale invariance: Enables comparison across different outcome measures
• Clinical relevance: Standard metric in medical literature
• Regulatory familiarity: FDA uses percent change in efficacy assessments

5.7 Correlation Coefficients

We compute both parametric and non-parametric measures:

5.7.1 3.7.1 Pearson Correlation (Linear Relationships)

𝑟Pearson =
∑𝑛

𝑗=1(𝑝𝑗 − ̄𝑝)(𝑜𝑗 − ̄𝑜)

√∑𝑛
𝑗=1(𝑝𝑗 − ̄𝑝)2 ⋅ √∑𝑛

𝑗=1(𝑜𝑗 − ̄𝑜)2
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5.7.2 3.7.2 Spearman Rank Correlation (Monotonic Relationships)

𝑟Spearman = 1 −
6 ∑𝑛

𝑗=1 𝑑2
𝑗

𝑛(𝑛2 − 1)

where 𝑑𝑗 = rank(𝑝𝑗) − rank(𝑜𝑗).

5.7.3 3.7.3 Forward and Reverse Correlations

We compute both:

• Forward: 𝑃 → 𝑂 (predictor predicts outcome)
• Reverse: 𝑂 → 𝑃 (outcome predicts predictor)

If reverse correlation is stronger, this suggests:

• Reverse causality (symptom drives treatment-seeking)
• Confounding by indication
• Bidirectional relationship

5.8 Z-Score Normalization

To assess effect magnitude relative to natural variability:

𝑧 = |Δ|
RSDbaseline

where relative standard deviation:

RSDbaseline = 𝜎baseline
𝜇baseline

× 100

Interpretation: 𝑧 > 2 indicates 𝑝 < 0.05 under normality, meaning the observed effect exceeds
typical baseline fluctuation.

5.9 Statistical Significance

Two-tailed t-test for correlation significance:

𝑡 = 𝑟
√

𝑛 − 2√
1 − 𝑟2

with 𝑛 − 2 degrees of freedom. Reject null hypothesis (𝐻0 ∶ 𝜌 = 0) at 𝛼 = 0.05 when:

|𝑡| > 𝑡critical(𝑛 − 2, 𝛼/2)

16



5.10 Hyperparameter Optimization

The onset delay 𝛿∗ and duration of action 𝜏∗ are selected to maximize correlation coefficient strength:

(𝛿∗, 𝜏∗) = argmax
𝛿,𝜏

|𝑟(𝛿, 𝜏)|

Search Strategy: 1. Initialize with category defaults (e.g., 30 min onset, 24 hr duration for
drugs) 2. Grid search over physiologically plausible ranges 3. Select parameters yielding strongest
correlation coefficient

Overfitting Mitigation:

• Restrict search to category-appropriate ranges
• Require minimum sample size before optimization
• Report both optimized and default-parameter results

6 Population Aggregation

6.1 Individual to Population

For population-level estimates, aggregate across 𝑁 participants:

̄𝑟 = 1
𝑁

𝑁
∑
𝑖=1

𝑟𝑖

Δ̄ = 1
𝑁

𝑁
∑
𝑖=1

Δ𝑖

6.2 Standard Error and Confidence Intervals

SE ̄𝑟 = 𝜎𝑟√
𝑁

CI95% = ̄𝑟 ± 1.96 ⋅ SE ̄𝑟

6.3 Heterogeneity Assessment

Between-participant variance:

𝜎2
between = Var(𝑟𝑖)

High heterogeneity suggests:

• Subgroup effects (responders vs. non-responders)
• Interaction with unmeasured factors
• Need for personalized analysis
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7 Data Quality Requirements

7.1 Minimum Thresholds

Requirement Threshold Rationale

Predictor value changes ≥ 5 Ensures sufficient variance
Outcome value changes ≥ 5 Ensures sufficient variance
Overlapping pairs ≥ 30 Central limit theorem
Baseline fraction ≥ 10% Adequate baseline
Follow-up fraction ≥ 10% Adequate predictor exposure
Processed daily measurements ≥ 4 Minimum data density

7.2 Variance Validation

Before computing variable relationships, validate sufficient variance:

changes(𝑋) =
𝑛−1
∑
𝑗=1

𝟙[𝑥𝑗 ≠ 𝑥𝑗+1]

If changes(𝑃 ) < 5 or changes(𝑂) < 5, abort with InsufficientVarianceException.

7.3 Outcome Value Spread

spread𝑂 = max(𝑂) − min(𝑂)

Variable relationships with zero spread are undefined and excluded.

8 Predictor Impact Score
The short version: Not all correlations are created equal. If we observe that “people who take
Drug X report less pain,” how confident should we be? The Predictor Impact Score (PIS) answers
this by combining: (1) how strong is the relationship, (2) how many people show it, (3) does the
drug come before the improvement (not after), and (4) is there a dose-response pattern. High PIS
= worth investigating in a clinical trial. Low PIS = probably noise.

The Predictor Impact Score (PIS) is a composite metric that quantifies treatment-outcome
relationship strength from patient health data, operationalizing Bradford Hill causality criteria
to prioritize drug effects for clinical trial validation. It integrates correlation strength, statistical
significance, effect magnitude, and multiple Bradford Hill criteria into a single interpretable score.
Higher scores indicate predictors with greater, more reliable impact on the outcome.

Citation format: When citing this metric in academic work, use “Predictor Impact
Score” with reference to this methodology document.

8.1 What Makes the Predictor Impact Score Novel

Unlike simple correlation coefficients, PIS addresses fundamental limitations of observational analysis:
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1. Sample size agnosticism: Raw correlations don’t account for whether N=10 or N=10,000.
PIS incorporates saturation functions that weight evidence accumulation.

2. Temporal ambiguity: Correlations can’t distinguish A→B from B→A. PIS includes a
temporality factor comparing forward vs. reverse correlations.

3. Effect magnitude blindness: Statistical significance � practical significance. PIS incorporates
z-scores to assess effect magnitude relative to baseline variability.

4. Isolated metrics: Traditional analysis reports correlation, p-value, and effect size separately.
PIS integrates them into a single prioritization metric aligned with Bradford Hill criteria.

The Predictor Impact Score is not a causal proof. It’s a principled heuristic for ranking which
predictor-outcome relationships warrant further investigation, including experimental validation.

8.2 User-Level Predictor Impact Score

For individual participant (N-of-1) analyses, we compute:

PISuser = |𝑟| ⋅ 𝑆 ⋅ 𝜙𝑧 ⋅ 𝜙temporal ⋅ 𝑓interest + PISagg

Where:

• |𝑟| = absolute value of the correlation coefficient (strength)
• 𝑆 = statistical significance (1 - p-value)
• 𝜙𝑧 = normalized z-score factor (effect magnitude)
• 𝜙temporal = temporality factor (forward vs. reverse causation)
• 𝑓interest = interest factor (penalizes spurious variable pairs)
• PISagg = population-level aggregate score (provides context from broader population)

8.3 Aggregate (Population-Level) Predictor Impact Score

For population-level analyses aggregated across multiple participants:

PISagg = |𝑟forward| ⋅ 𝑤 ⋅ 𝜙users ⋅ 𝜙pairs ⋅ 𝜙change ⋅ 𝜙gradient

Where:

• |𝑟forward| = absolute forward Pearson correlation coefficient (strength)
• 𝑤 = weighted average of community votes on plausibility
• 𝜙users = 1 − 𝑒−𝑁/𝑁sig (user saturation, 𝑁sig = 10)
• 𝜙pairs = 1 − 𝑒−𝑛/𝑛sig (pair saturation, 𝑛sig = significant pairs threshold)
• 𝜙change = 1 − 𝑒−Δspread/Δsig (change spread saturation)
• 𝜙gradient = biological gradient coefficient (dose-response)

The saturation functions asymptotically approach 1 as sample sizes increase, reflecting that consistent
findings across more participants strengthen causal inference.
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8.4 Z-Score and Effect Magnitude Factor

The z-score quantifies the magnitude of the outcome change relative to baseline variability:

𝑧 = |Δ%baseline|
RSDbaseline

Where:

• Δ%baseline = percent change from baseline (see below)
• RSDbaseline = relative standard deviation of outcome during baseline period

A z-score > 2 indicates statistical significance (p < 0.05), meaning the observed change is unlikely
due to random variation.

The normalized z-score factor incorporates effect magnitude into the PIS score:

𝜙𝑧 = |𝑧|
|𝑧| + 𝑧ref

Where 𝑧ref = 2 (the conventional significance threshold). This saturating function:

• Approaches 0 for negligible effects (z → 0)
• Equals 0.5 at the significance threshold (z = 2)
• Approaches 1 for very large effects (z → ∞)

8.5 Temporality Factor

The temporality factor quantifies evidence that the predictor precedes and causes the outcome
(rather than reverse causation):

𝜙temporal = |𝑟forward|
|𝑟forward| + |𝑟reverse|

Where:

• 𝑟forward = correlation when predictor precedes outcome (P → O)
• 𝑟reverse = correlation when outcome precedes predictor (O → P)

This factor:

• Equals 0.5 when forward and reverse correlations are equal (ambiguous causality)
• Approaches 1 when forward correlation dominates (supports predictor → outcome)
• Approaches 0 when reverse correlation dominates (suggests reverse causation or confounding

by indication)

8.6 Percent Change from Baseline

The primary effect size metric expressing treatment impact:

Δ%baseline =
𝑂̄follow-up − 𝑂̄baseline

𝑂̄baseline
× 100
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Where:

• 𝑂̄follow-up = mean outcome value during follow-up period (after predictor exposure)
• 𝑂̄baseline = mean outcome value during baseline period (before predictor exposure)

For outcomes measured in percentages or with zero baseline, we use absolute change instead:

Δabs = 𝑂̄follow-up − 𝑂̄baseline

8.7 Statistical Significance

The statistical significance component captures confidence in the relationship:

𝑆 = 1 − 𝑝

Where 𝑝 is the p-value from the correlation significance test. Higher values indicate greater confidence
that the observed relationship is not due to chance.

8.8 Interest Factor

The interest factor 𝑓interest penalizes likely spurious or uninteresting variable pairs:

𝑓interest = 𝑓𝑃 ⋅ 𝑓𝑂 ⋅ 𝑓pair

Where:

• 𝑓𝑃 = predictor interest factor (reduced for test variables, apps, addresses)
• 𝑓𝑂 = outcome interest factor (reduced for non-outcome categories)
• 𝑓pair = pair appropriateness (reduced for illogical category combinations)

8.9 Additional Data Quality Components

Skewness Coefficient (penalizes non-normal distributions):

𝜙skew = 1
1 + 𝛾2

𝑃
⋅ 1

1 + 𝛾2
𝑂

Kurtosis Coefficient (penalizes heavy tails):

𝜙kurt = 1
1 + 𝜅2

𝑃
⋅ 1

1 + 𝜅2
𝑂

Biological Gradient (dose-response relationship):

𝜙gradient = (
̄𝑝high − ̄𝑝

𝜎𝑃
− ̄𝑝low − ̄𝑝

𝜎𝑃
)

2

Measures the standardized difference between predictor values that predict high vs. low outcomes.
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8.10 Bradford Hill Criteria Mapping

The PIS operationalizes six of the nine Bradford Hill criteria for causality16:

Component Formula Bradford Hill Criterion In PIS Formula

‖𝑟‖ Correlation
magnitude

Strength Yes (direct)

𝜙𝑧 Normalized
z-score

Strength (effect magnitude) Yes (user-level)

Δ% Percent
change from
baseline

Strength (clinical significance) Yes (via 𝜙𝑧)

𝜙users, 𝜙pairs Sample
saturation

Consistency Yes (aggregate)

𝜙gradient Dose-
response
coefficient

Biological Gradient Yes (aggregate)

𝑤 Weighted
community
votes

Plausibility Yes (aggregate)

𝑓interest Category ap-
propriateness

Specificity Yes (user-level)

𝜙temporal Forward/re-
verse ratio

Temporality Yes (user-level)

𝛿 > 0 Onset delay
requirement

Temporality Enforced in design

8.11 Interpreting Predictor Impact Scores

PIS scores range from 0 to approximately 1 (though values slightly above 1 are possible with very
strong evidence). Guidelines for interpretation:

PIS Range Interpretation Recommended Action

� 0.5 Strong evidence High priority for RCT validation
0.3 - 0.5 Moderate evidence Consider for experimental investigation
0.1 - 0.3 Weak evidence Monitor for additional data
< 0.1 Insufficient evidence Low priority; may be noise

Important caveats:

• These thresholds are preliminary and should be validated against RCT outcomes
• PIS is relative, not absolute. Use it for prioritization, not proof.
• High PIS does not guarantee causation; low PIS does not rule it out
• Context matters: a PIS of 0.2 for a novel relationship may be more interesting than 0.5 for a

known one
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8.12 Optimal Daily Value for Precision Dosing

A key output of our analysis is the optimal daily value, the predictor value that historically
precedes the best outcomes. This enables personalized, precision dosing recommendations.

8.12.1 6.11.1 Value Predicting High Outcome

The Value Predicting High Outcome (𝑉high) is the average predictor value observed when the
outcome exceeds its mean:

𝑉high = 1
|𝐻|

∑
(𝑝,𝑜)∈𝐻

𝑝

Where:

• 𝐻 = {(𝑝, 𝑜) ∶ 𝑜 > 𝑂̄} is the set of predictor-outcome pairs where outcome exceeds its average
• 𝑂̄ = mean outcome value across all pairs
• 𝑝 = predictor (cause) value for each pair

Calculation Process: 1. Compute the average outcome value (𝑂̄) across all predictor-outcome
pairs 2. Filter pairs to include only those where outcome > 𝑂̄ (the “high effect” pairs) 3. Calculate
the mean predictor value across these high-effect pairs

8.12.2 6.11.2 Value Predicting Low Outcome

The Value Predicting Low Outcome (𝑉low) is the average predictor value observed when the
outcome is below its mean:

𝑉low = 1
|𝐿|

∑
(𝑝,𝑜)∈𝐿

𝑝

Where:

• 𝐿 = {(𝑝, 𝑜) ∶ 𝑜 < 𝑂̄} is the set of predictor-outcome pairs where outcome is below its average

8.12.3 6.11.3 Grouped Optimal Values

For interpretability, we also calculate grouped optimal values that map to common dosing
intervals:

• Grouped Value Predicting High Outcome: The nearest grouped predictor value (e.g.,
rounded to typical dosing units) to 𝑉high

• Grouped Value Predicting Low Outcome: The nearest grouped predictor value to 𝑉low

This allows recommendations like “400mg of Magnesium” rather than “412.7mg of Magnesium.”

8.12.4 6.11.4 Precision Dosing Recommendations

These optimal values enable personalized recommendations:

For Positive Valence Outcomes (where higher is better, e.g., energy, sleep quality): > “Your
[Outcome] was highest after [Grouped Value Predicting High Outcome] of [Predictor] over the
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previous [Duration of Action].” > > Example: “Your Sleep Quality was highest after 400mg of
Magnesium over the previous 24 hours.”

For Negative Valence Outcomes (where lower is better, e.g., pain, anxiety): > “Your [Outcome]
was lowest after [Grouped Value Predicting Low Outcome] of [Predictor] over the previous [Duration
of Action].” > > Example: “Your Anxiety Severity was lowest after 100mg of Sertraline over the
previous 24 hours.”

8.12.5 6.11.5 Mathematical Relationship to Biological Gradient

The optimal values are closely related to the biological gradient coefficient (𝜙gradient):

𝜙gradient = (
𝑉high − ̄𝑃

𝜎𝑃
− 𝑉low − ̄𝑃

𝜎𝑃
)

2

A larger separation between 𝑉high and 𝑉low indicates:

• Stronger dose-response relationship
• More reliable precision dosing recommendations
• Higher biological gradient coefficient

8.12.6 6.11.6 Clinical Applications

Metric Definition Clinical Use

𝑉high Avg predictor when outcome >
mean

Optimal dose for positive outcomes

𝑉low Avg predictor when outcome <
mean

Dose to avoid for positive outcomes

𝑉high − 𝑉low Optimal value spread Magnitude of dose-response effect

Example Application: For a participant tracking Magnesium supplementation and Sleep Quality:

• 𝑉high = 412mg → Grouped = 400mg (sleep quality highest after this dose)
• 𝑉low = 127mg → Grouped = 125mg (sleep quality lowest after this dose)
• Recommendation: “Take approximately 400mg of Magnesium for optimal sleep quality”

8.12.7 6.11.7 Limitations

1. Correlation � Causation: Optimal values reflect associations, not guaranteed causal effects
2. Individual Variation: Population optimal values may not be optimal for all individuals
3. Context Dependence: Optimal values may vary by timing, combination with other factors
4. Grouping Artifacts: Rounding to common doses may lose precision

Best Practice: Use optimal values as starting points for personal experimentation, not as definitive
prescriptions.
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8.12.8 6.11.8 Confidence Intervals for Optimal Values

Optimal values should be reported with uncertainty bounds to convey reliability:

CI𝑉high
= 𝑉high ± 𝑡𝛼/2 ⋅

𝜎𝑝|𝐻

√|𝐻|

Where:

• 𝜎𝑝|𝐻 = standard deviation of predictor values in high-outcome set 𝐻
• |𝐻| = number of pairs in high-outcome set
• 𝑡𝛼/2 = critical t-value for desired confidence level

Interpretation Guidelines:

CI Width (relative to mean) Reliability Recommendation

< 10% High Use as primary recommendation
10-25% Moderate Present as range (e.g., “350-450mg”)
25-50% Low Insufficient precision for dosing
> 50% Very Low Do not use for recommendations

Example: If 𝑉high = 400mg with 95% CI [380, 420], report: “Optimal dose: 400mg (95% CI:
380-420mg)”

8.12.9 6.11.9 Individual vs Population Optimal Values

Both individual and population optimal values are computed and stored. Guidelines for use:

Scenario Recommended Source Rationale

User has �50 paired
measurements

Individual 𝑉high Sufficient personal data

User has 20-50
measurements

Weighted blend 0.5 ⋅ 𝑉user + 0.5 ⋅ 𝑉pop

User has <20
measurements

Population 𝑉high Insufficient personal data

User’s optimal differs
>50% from population

Flag for review May indicate unique
response or data quality
issue

Blending Formula:

𝑉recommended = 𝑤 ⋅ 𝑉user + (1 − 𝑤) ⋅ 𝑉pop

Where 𝑤 = min(1, 𝑛user/𝑛threshold) with 𝑛threshold = 50 pairs.
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8.12.10 6.11.10 Temporal Stability and Recalculation

Optimal values may drift over time due to:

• Physiological changes (age, weight, health status)
• Tolerance development
• Seasonal factors
• Lifestyle changes

Recalculation Policy:

Trigger Action

New measurements added Recalculate after every 10 new pairs
Time elapsed Recalculate monthly regardless of new data
Significant life change User-triggered recalculation
Optimal value drift >20% Alert user to potential change

Rolling Window Option: For treatments where tolerance is expected, compute optimal values
using only the most recent 90 days of data rather than all historical data.

Stability Metric:

Stability = 1 −
|𝑉 current

high − 𝑉 previous
high |

𝑉 previous
high

Stability < 0.8 (>20% change) triggers a notification to the user.

8.12.11 6.11.11 Edge Cases: Minimal Dose-Response

When 𝑉high ≈ 𝑉low, the predictor shows no clear dose-response relationship:

Detection Criterion:
|𝑉high − 𝑉low|

𝜎𝑃
< 0.5

(Less than half a standard deviation apart)

Possible Interpretations: 1. Threshold effect: Any dose above zero works equally well 2. No
effect: Predictor doesn’t influence outcome 3. Non-linear response: U-shaped or inverted-U
curve not captured by simple high/low split 4. Insufficient variance: User takes similar doses,
preventing detection

Handling:

• Do not display optimal value recommendations when dose-response is minimal
• Instead report: “No clear dose-response relationship detected for [Predictor] → [Outcome]”
• Flag for potential non-linear analysis in future versions
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8.12.12 6.11.12 Validation of Optimal Values

The Critical Question: Do users who follow optimal value recommendations actually experience
better outcomes than those who don’t?

Proposed Validation Study:

1. Prospective A/B Test:
• Group A: Receives personalized optimal value recommendations
• Group B: Receives no recommendations (continues current behavior)
• Compare outcome trajectories over 30-90 days

2. Retrospective Adherence Analysis:
• For users with established optimal values, calculate “adherence score”:

Adherence =
Days within ± 20% of 𝑉high

Total tracking days

• Correlate adherence with outcome improvement

Success Metrics:

• Users in top adherence quartile should show >15% better outcomes than bottom quartile
• Optimal value recommendations should outperform random dosing by >10%

Current Status: This validation has not been performed. Until validated, optimal values should
be presented as “data-driven suggestions” rather than “clinically validated recommendations.”

8.13 Saturation Constant Rationale

The saturation constants (N_sig, n_sig, etc.) reflect pragmatic thresholds based on statistical and
clinical considerations:

Constant Value Rationale

N_sig (users) 10 At N=10, user saturation � 0.63. By
N=30, � 0.95. Reflects that
consistency across 10+ individuals
provides meaningful replication.

n_sig (pairs) 100 Central limit theorem suggests n�30
for normality. We use 100 as the
“strong evidence” threshold.

Δ_sig (change spread) 10% A 10% change is often considered
clinically meaningful across many
health outcomes.

z_ref 2 Corresponds to p < 0.05 under
normality (the conventional
significance threshold).

These constants are not empirically optimized. Future work should: 1. Validate constants
against known causal relationships (from RCTs) 2. Consider domain-specific thresholds (e.g.,
psychiatric vs. cardiovascular outcomes) 3. Implement sensitivity analyses to assess robustness to
constant choices
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8.14 Effect Following High vs Low Predictor Values

Beyond optimal values, we calculate the average outcome following different predictor levels
to quantify dose-response relationships:

8.14.1 6.13.1 Average Outcome Metrics

Metric Definition Clinical Interpretation

Average
Outcome

Mean outcome across all
pairs

Baseline outcome level

Average
Outcome
Following High
Predictor

Mean outcome when
predictor > mean

Outcome after high exposure

Average
Outcome
Following Low
Predictor

Mean outcome when
predictor < mean

Outcome after low exposure

Average Daily
High Predictor

Mean predictor in upper
51% of spread

“High dose” value

Average Daily
Low Predictor

Mean predictor in lower
49% of spread

“Low dose” value

8.14.2 6.13.2 Calculation

𝑂̄high = 𝔼[𝑂 ∣ 𝑃 > ̄𝑃 ]

𝑂̄low = 𝔼[𝑂 ∣ 𝑃 ≤ ̄𝑃 ]

Where ̄𝑃 is the mean predictor value across all pairs.

Effect Size from High to Low Cause:

Δhigh-low =
𝑂̄high − 𝑂̄low

𝑂̄low
× 100

This metric directly shows the percent difference in outcome between high and low predictor exposure
periods.

8.15 Predictor Baseline and Treatment Averages

For treatment-response analysis, we distinguish between baseline (non-treatment) and treatment
periods:

Metric Definition Use Case

Predictor Baseline
Average Per Day

Average daily predictor during
low-exposure periods

Typical non-treatment value
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Metric Definition Use Case

Predictor Treatment
Average Per Day

Average daily predictor during
high-exposure periods

Typical treatment dosage

Predictor Baseline
Average Per Duration Of
Action

Baseline cumulative over duration of
action

For longer-acting effects

Predictor Treatment
Average Per Duration Of
Action

Treatment cumulative over duration
of action

Cumulative treatment dose

Example: For a user taking Magnesium supplements:

• predictor_baseline_average_per_day = 50mg (days not supplementing, dietary only)
• predictor_treatment_average_per_day = 400mg (days actively supplementing)
• This reveals the effective treatment dose vs. background exposure

8.16 Relationship Quality Filters

Not all statistically significant relationships are useful. We apply quality filters to prioritize
actionable findings:

8.16.1 6.15.1 Filter Flags

Flag Description Impact on Ranking

Predictor Is
Controllable

User can directly modify this
predictor (e.g., food,
supplements)

Required for actionable recommendations

Outcome Is A
Goal

Outcome is something users
want to optimize (e.g., mood,
energy)

Required for relevance

Plausibly
Causal

Plausible biological mechanism
exists

Increases confidence

Obvious Relationship is already
well-known (e.g., caffeine →
alertness)

May deprioritize for discovery

Boring Relationship unlikely to interest
users

Filters from default views

Interesting
Variable
Category Pair

Category combination is
typically meaningful (e.g.,
Treatment → Symptom)

Prioritizes for analysis

8.16.2 6.15.2 Boring Relationship Definition

A relationship is marked boring = TRUE if ANY of:

• Predictor is not controllable AND outcome is not a goal
• Relationship could not plausibly be causal
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• Confidence level is LOW
• Effect size is negligible (|Δ| < 1%)
• Relationship is trivially obvious

8.16.3 6.15.3 Usefulness and Causality Voting

Users can vote on individual relationships:

Vote Type Values Purpose

Usefulness Vote -1, 0, 1 Whether knowledge of this
relationship is useful

Causality Vote -1, 0, 1 Whether there’s a plausible
causal mechanism

Aggregate votes contribute to the PIS plausibility weight (𝑤).

8.17 Variable Valence

Valence indicates whether higher values of a variable are inherently good, bad, or neutral:

Valence Meaning Examples

Positive Higher is better Energy, Sleep Quality, Productivity
Negative Lower is better Pain, Anxiety, Fatigue
Neutral Direction depends on context Heart Rate, Weight

8.17.1 6.16.1 Impact on Interpretation

Valence affects how we interpret correlation direction:

Predictor-Outcome Valence Positive Correlation Negative Correlation

Positive → Positive Both improve together Trade-off
Positive → Negative Predictor worsens outcome Predictor improves outcome
Treatment → Negative Symptom Side effect Therapeutic effect

Example: A positive correlation between Sertraline and Depression Severity is BAD (depression
has negative valence, so lower is better). The same positive correlation between Sertraline and
Energy would be GOOD.

8.18 Temporal Parameter Optimization

We optimize onset_delay (�) and duration_of_action (�) to find the temporal parameters that
maximize correlation strength:

8.18.1 6.17.1 Stored Optimization Data
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Field Description

Correlations Over Delays Pearson r values for various onset delays
Correlations Over Durations Pearson r values for various durations of action
Onset Delay With Strongest
Pearson Correlation

Optimal � value

Pearson Correlation With No
Onset Delay

Baseline r for immediate effect

Average Forward Pearson
Correlation Over Onset Delays

Mean r across all tested delays

Average Reverse Pearson
Correlation Over Onset Delays

Mean reverse r across delays

8.18.2 6.17.2 Optimization Grid

For each predictor-outcome pair, we test:

• Onset delays: 0, 30min, 1hr, 2hr, 4hr, 8hr, 12hr, 24hr, 48hr, 72hr…
• Durations: 1hr, 4hr, 12hr, 24hr, 48hr, 72hr, 1 week, 2 weeks…

The parameters yielding the strongest |r| are selected, subject to category-specific physiological
constraints.

8.18.3 6.17.3 Overfitting Protection

To prevent spurious optimization: 1. Minimum pairs required: Only optimize if n > 50 pairs 2.
Category constraints: Limit search to plausible ranges (e.g., caffeine onset < 2hr) 3. Report
both: Show optimized AND default-parameter results 4. Consistency check: Compare forward
vs reverse optimization

8.19 Spearman Rank Correlation

In addition to Pearson correlation, we compute Spearman rank correlation (forward_spearman_correlation_coefficient)
for robustness:

𝑟𝑠 = 1 − 6 ∑ 𝑑2
𝑖

𝑛(𝑛2 − 1)

Where 𝑑𝑖 = difference in ranks for each pair.

Advantages over Pearson:

• Robust to outliers
• Captures monotonic (not just linear) relationships
• Less affected by skewed distributions

When to prefer Spearman:

• Outcome has skewed distribution (e.g., symptom severity with many zeros)
• Relationship is monotonic but non-linear (e.g., diminishing returns)
• Data contains outliers from measurement errors
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9 Outcome Label Generation

9.1 Predictor Analysis Reports

For each outcome variable (e.g., Depression Severity), we generate comprehensive “outcome labels”
showing:

1. All predictors ranked by effect size
2. Positive predictors (treatments/factors that improve the outcome)
3. Negative predictors (treatments/factors that worsen the outcome)
4. Effect sizes as percent change from baseline
5. Confidence levels and sample sizes

9.2 Report Structure

Outcome Label: [Outcome Variable Name]
Population: N = [number] participants
Total Studies: [number] treatment-outcome pairs analyzed

POSITIVE EFFECTS (Treatments predicting IMPROVEMENT)
================================================
Rank | Treatment | Effect Size | 95% CI | N | Confidence
-----|-----------|-------------|--------|---|------------
1 | Treatment A | +23.5% | [18.2, 28.8] | 1,247 | High
2 | Treatment B | +18.2% | [12.1, 24.3] | 892 | High
3 | Treatment C | +12.7% | [8.3, 17.1] | 2,103 | High
...

NEGATIVE EFFECTS (Treatments predicting WORSENING)
=================================================
Rank | Treatment | Effect Size | 95% CI | N | Confidence
-----|-----------|-------------|--------|---|------------
1 | Treatment X | -15.3% | [-20.1, -10.5] | 567 | Medium
2 | Treatment Y | -8.7% | [-12.3, -5.1] | 1,892 | High
...

NO SIGNIFICANT EFFECT
=====================
[List of treatments with |Δ| < threshold or p > 0.05]

9.3 Category-Specific Analysis

Reports are organized by predictor category:

1. Treatments (Drugs, Supplements)
• Ranked by efficacy (positive Δ)
• Safety signals highlighted (negative Δ)

2. Foods & Nutrients
• Dietary factors affecting outcome

3. Lifestyle Factors
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• Sleep, exercise, activities
4. Environmental Factors

• Weather, pollution, allergens
5. Comorbid Conditions

• Other symptoms/conditions as predictors

9.4 Verification Status

Each study is classified by verification status:

Status Icon Description

Verified � Up-voted by users; data reviewed and valid
Unverified ? Awaiting review
Flagged � Down-voted; potential data quality issues

9.5 Outcome Labels vs. FDA Drug Labels

Traditional FDA drug labels are per-drug documents that list qualitative adverse events and
indications based on pre-market trials. They are static (updated infrequently), qualitative (“may
cause drowsiness”), and organized around the drug rather than the patient’s condition.

Outcome Labels invert this paradigm: they are per-outcome documents that rank all treatments
by quantitative effect size for a given health outcome. They are dynamic (updated continuously as
data arrives), quantitative (“↓24.7% depression severity”), and organized around what the patient
wants to optimize. This enables patients and clinicians to answer the question: “What works best
for my condition?” This is a question traditional drug labels cannot answer.

9.6 Worked Example: Complete Outcome Label

The following shows a complete outcome label for depression, demonstrating how treatments are
ranked by effect size with confidence intervals:

OUTCOME LABEL: Depression Severity

Based on 47,832 participants tracking depression outcomes Last updated: 2026-01-04 | Data period:
2020-2026

Treatments Improving Depression (ranked by effect size Δ)

Table 20: Treatments associated with depression improvement. Negative effect indicates symptom
reduction.

Rank Treatment Effect 95% CI N PIS Optimal Dose

1 Exercise −31.2% [27.1, 35.3] 12,847 0.67 45 min/day
2 Bupropion −28.3% [22.1, 34.5] 2,847 0.54 300mg
3 Sertraline −24.7% [19.8, 29.6] 5,123 0.51 100mg
4 Sleep (7-9 hrs) −22.1% [18.4, 25.8] 31,204 0.48 8.2 hrs
5 Venlafaxine −21.2% [15.3, 27.1] 1,892 0.44 150mg
6 Omega-3 −18.9% [14.2, 23.6] 4,521 0.38 2000mg EPA+DHA
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Rank Treatment Effect 95% CI N PIS Optimal Dose

7 Meditation −16.4% [12.1, 20.7] 8,932 0.35 20 min/day
8 Fluoxetine −15.8% [11.2, 20.4] 3,456 0.33 40mg
9 Vitamin D −12.3% [8.7, 15.9] 6,789 0.28 4000 IU
10 Social

interaction
−11.7% [8.2, 15.2] 9,234 0.26 3+ hrs/day

Treatments Worsening Depression (safety signals)

Table 21: Treatments associated with depression worsening. Positive effect indicates symptom
increase.

Rank Treatment Effect 95% CI N PIS Note

1 Alcohol (>2/day) +23.4% [18.9, 27.9] 7,234 0.52 Dose-
dependent

2 Sleep deprivation +19.8% [15.2, 24.4] 14,521 0.47 <6
hrs/night

3 Social isolation +15.2% [11.3, 19.1] 5,892 0.38 <1 hr/day
4 Refined sugar +8.7% [5.2, 12.2] 11,234 0.24 >50g/day

No Significant Effect (|Δ| < 5% or 𝑝 > 0.05): Multivitamin, Probiotics, B-complex, Magnesium
(for depression specifically), Ashwagandha, 5-HTP, SAMe, St. John’s Wort1

Legend: PIS = Predictor Impact Score (0-1 scale, higher = stronger evidence); Optimal Dose =
𝑉ℎ𝑖𝑔ℎ (predictor value associated with best outcomes)

Interpretation: This outcome label shows that for depression, exercise and sleep optimization
rival or exceed pharmaceutical interventions in effect size, with stronger evidence bases (higher N).
Bupropion and Sertraline lead among medications. The safety signals section highlights modifiable
risk factors that worsen depression.

10 Treatment Ranking System

10.1 Within-Category Rankings

For each therapeutic category (e.g., Antidepressants), treatments are ranked by:

1. Primary: Effect size (percent change from baseline)
2. Secondary: Confidence level (High > Medium > Low)
3. Tertiary: Sample size

10.2 Ranking Algorithm

For each treatment 𝑇 in a therapeutic category, we compute a composite ranking score:

RankScore𝑇 = Δ̄𝑇 × 𝑤confidence × PIS𝑇

1St. John’s Wort shows high heterogeneity (some responders, some non-responders)
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Figure 4: Outcome Labels show quantitative effect sizes, sample sizes, and confidence intervals for
each treatment - like “nutrition facts for drugs”

where Δ̄𝑇 is the mean effect size across participants, 𝑤confidence is the confidence weight (see Table 22),
and PIS𝑇 is the Predictor Impact Score. Treatments are sorted by descending rank score.

10.3 Confidence Weighting

Table 22: Confidence weighting schema for treatment ranking.

Confidence Level Weight (𝑤) Criteria

High 1.0 𝑝 < 0.01 OR 𝑁 > 100 OR pairs > 500
Medium 0.7 𝑝 < 0.05 OR 𝑁 > 10 OR pairs > 100
Low 0.4 Meets minimum thresholds only

10.4 Comparative Effectiveness Display

Table 23 illustrates how treatments within a therapeutic category are presented to users.

Table 23: Antidepressants ranked by efficacy for depression. Negative effect indicates symptom
reduction.

Rank Treatment Effect (Δ) 95% CI N Confidence

1 Bupropion 300mg −28.3% [22.1, 34.5] 2,847 High
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Rank Treatment Effect (Δ) 95% CI N Confidence

2 Sertraline 100mg −24.7% [19.8, 29.6] 5,123 High
3 Venlafaxine 150mg −21.2% [15.3, 27.1] 1,892 High
4 Fluoxetine 40mg −18.9% [13.2, 24.6] 3,456 High

11 Safety and Efficacy Quantification

11.1 Safety Signal Detection

Adverse Effect Identification: Safety signals are identified through (1) negative correlations
between treatment and beneficial outcomes, and (2) positive correlations between treatment and
harmful outcomes.

Table 24: Example safety signal report showing potential adverse effects with statistically significant
positive correlations to harmful outcomes.

Outcome Effect (Δ) 95% CI Plausibility Action

Fatigue +18.3% [12.1, 24.5] High (known sedation) Monitor
Nausea +15.7% [8.9, 22.5] High (GI effects) Monitor
Weight Gain +8.2% [4.1, 12.3] Medium Long-term monitoring
Anxiety +6.5% [2.1, 10.9] Low (paradoxical) Investigate

11.2 Efficacy Signal Detection

Therapeutic Effect Identification: Efficacy signals are identified through (1) positive correlations
between treatment and beneficial outcomes, and (2) negative correlations between treatment and
harmful outcomes (symptom reduction).

Table 25: Example efficacy signal report showing therapeutic effects with statistically significant
correlations.

Outcome Effect (Δ) 95% CI Indication Evidence

Depression −24.7% [19.8, 29.6] Primary Strong
Anxiety −18.2% [12.3, 24.1] Secondary Strong
Sleep Quality +15.3% [10.1, 20.5] Secondary Moderate
Energy +12.1% [7.2, 17.0] Secondary Moderate

11.3 Benefit-Risk Assessment

Net Clinical Benefit Score:

NCB = ∑
𝑖∈benefits

𝑤𝑖 ⋅ |Δ𝑖| − ∑
𝑗∈risks

𝑤𝑗 ⋅ |Δ𝑗|

where 𝑤 represents importance weights assigned by clinical relevance.
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Example: Sertraline 100mg Benefit-Risk Profile

Table 26: Benefit-risk components for Sertraline 100mg.

Benefits Effect Weight Risks Effect Weight

Depression −24.7% 1.0 Nausea +8.3% 0.3
Anxiety −18.2% 0.8 Insomnia +5.1% 0.4

Sexual dysfunction +12.7% 0.5

Weighted Summary: Benefits = 39.26, Risks = 8.93, Net Clinical Benefit = +30.33 (favorable
profile for depression/anxiety)

12 Addressing the Bradford Hill Criteria
The Bradford Hill criteria16 provide the foundational framework for assessing causation from
observational data. This section details how our framework addresses each criterion.

12.1 Complete Criteria Mapping

Criterion How Addressed Quantitative Metric In PIS?

Strength Effect size magnitude Pearson 𝑟, Δ% Yes
Consistency Cross-participant

aggregation
𝑁, 𝑛, SE, CI Yes

Specificity Category
appropriateness

Interest factor Yes

Temporality Onset delay
requirement

𝛿 > 0 enforced Yes

Biological
Gradient

Dose-response analysis Gradient coefficient Yes

Plausibility Community voting Up/down votes Yes
Coherence Literature

cross-reference
Narrative No

Experiment N-of-1 natural
experiments

Study design No

Analogy Similar variable
comparison

Narrative No

12.2 Quantitative Criteria Details

Strength:

• Reports Pearson 𝑟 with classification (very strong: �0.8, strong: �0.6, moderate: �0.4, weak:
�0.2, very weak: <0.2)

• Example: “There is a moderately positive (R = 0.45) relationship between Sertraline and
Depression improvement.”

Consistency:
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• Reports 𝑁 participants, 𝑛 paired measurements
• Notes that spurious associations naturally dissipate as participants modify behaviors based on

non-replicating findings

Temporality:

• Onset delay 𝛿 explicitly encodes treatment-to-effect lag
• Forward vs. reverse correlation comparison identifies potential reverse causality

Plausibility:

• Users vote on biological mechanism plausibility
• Weighted average contributes to ranking
• Crowd-sources expert and patient knowledge

13 Validation and Quality Assurance

13.1 User Voting System

Each study can receive user votes:

Vote Meaning Effect

Up-vote (�) Data appears valid, relationship
plausible

Included in verified results

Down-vote (�) Data issues or implausible
relationship

Flagged for review

No vote Not yet reviewed Included in unverified results

13.2 Automated Quality Checks

Before inclusion in reports:

1. Variance check: Minimum 5 value changes in both variables
2. Sample size check: Minimum 30 paired measurements
3. Baseline adequacy: �10% of data in baseline period
4. Effect spread check: Non-zero outcome variance
5. Temporal coverage: Adequate follow-up duration

13.3 Flagged Study Handling

Studies may be flagged for:

• Insufficient data
• Extreme outliers
• Implausible effect sizes (>200% change)
• Data entry errors
• Measurement device malfunctions

Flagged studies are:

• Excluded from primary rankings
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• Available for review in separate section
• Can be un-flagged after data correction

14 Stage 2: Pragmatic Trial Confirmation
The short version: Observational data can find promising signals, but only randomized trials
can prove causation. The good news: we don’t need expensive, slow traditional trials. The Oxford
RECOVERY trial proved that “pragmatic” trials (simple randomization embedded in routine care)
can validate treatments at 82x (95% CI: 50x-94.1x) lower cost and 10x faster. We use cheap
observational analysis (Stage 1) to filter millions of possibilities down to the top candidates, then
confirm the best ones with pragmatic trials (Stage 2). Result: validated treatment recommendations
at a fraction of current cost.

The observational methodology described in Sections 1-11 generates ranked hypotheses about
treatment-outcome relationships. While powerful for signal detection and hypothesis generation,
observational data alone cannot establish causation due to unmeasured confounding. This section
describes how pragmatic clinical trials serve as the confirmation layer, transforming promising
observational signals into validated causal relationships.

14.1 The Two-Stage Pipeline

Our complete methodology operates as a two-stage pipeline:

Stage Method Cost Purpose Output

Stage 1:
Signal
Detection

Aggregated N-of-1
observational
analysis

~$0.10/pa-
tient

Hypothesis
generation

Ranked PIS
signals

Stage 2:
Causal
Confirmation

Pragmatic
randomized trials

~$500 (95%
CI: $400-
$2.50K)/patient

Causation proof Validated effect
sizes

This design leverages the complementary strengths of each approach:

• Stage 1 scales to millions of treatment-outcome pairs at minimal cost, identifying the most
promising candidates

• Stage 2 applies experimental rigor to confirm causation for high-priority signals

14.2 Pragmatic Trial Methodology

Pragmatic trials differ fundamentally from traditional Phase III trials10:

Dimension Traditional Phase III Pragmatic Trial (RECOVERY Model)

Cost per
patient

$41K (95% CI: $20K-$120K) $500 (95% CI: $400-$2.50K)

Time to
results

3-7 years 3-6 months
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Dimension Traditional Phase III Pragmatic Trial (RECOVERY Model)

Patient
population

Homogeneous (strict exclusion) Real-world (minimal exclusion)

Setting Specialized research centers Routine clinical care
Data
collection

Extensive case report forms Minimal essential outcomes

Randomiza-
tion

Complex stratification Simple 1:1 or 1:1:1

Sample size Hundreds to thousands Thousands to tens of thousands

The Oxford RECOVERY trial demonstrated this model’s effectiveness: 49,000 patients enrolled
across 186 hospitals, 12 treatments evaluated, first life-saving result (dexamethasone) in 100 days,
1.00M lives (95% CI: 500k lives-2.00M lives) saved globally6.

14.3 Signal-to-Trial Prioritization

Not all observational signals warrant pragmatic trial confirmation. We propose a Trial Priority
Score (TPS) combining:

𝑇 𝑃𝑆 = 𝑃𝐼𝑆 × √𝐷𝐴𝐿𝑌 𝑠𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑎𝑏𝑙𝑒 × Novelty × Feasibility

Where:

• PIS: Predictor Impact Score from Stage 1 (higher = stronger signal)
• DALYs_{addressable}: Disease burden addressable by the treatment
• Novelty: Inverse of existing evidence (new signals prioritized)
• Feasibility: Practical considerations (drug availability, safety profile, cost)

Signals in the top 0.1-1% by TPS are candidates for pragmatic trial confirmation.

14.4 Comparative Effectiveness Randomization

For treatments already in clinical use, we employ comparative effectiveness designs following
the ADAPTABLE trial model11:

1. Embedded randomization: Randomization occurs within routine care visits
2. Minimal disruption: Patients receive standard care with random assignment between active

comparators
3. Real-world endpoints: Primary outcomes are events captured in EHR (mortality, hospital-

ization, symptom resolution)
4. Large simple design: Thousands of patients, minimal per-patient data collection

Example protocol for a high-PIS signal (Treatment A vs. Treatment B for Outcome X):
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Figure 5: FDA vs dFDA: The two-stage pipeline dramatically reduces cost and time compared to
traditional drug development

Table 31: Example pragmatic trial protocol for comparative effectiveness.

Parameter Specification

Eligibility Patients with Condition Y initiating treatment for
Outcome X

Randomization 1:1 to Treatment A vs. Treatment B
Primary endpoint Change in Outcome X at 90 days
Data collection Baseline characteristics (EHR), outcome at 90 days

(patient-reported or EHR)
Sample size 2,000 patients (1,000 per arm)
Cost ~$1M total ($500 (95% CI: $400-$2.50K)/patient)
Timeline 6-12 months

14.5 Feedback Loop: Trial Results Improve Observational Models

Pragmatic trial results feed back to improve Stage 1 methodology:

1. Calibration: Compare observational effect sizes to randomized effect sizes; develop correction
factors

2. Confounding identification: Trials where observational and randomized effects diverge
identify confounders

3. Subgroup discovery: Trial heterogeneity analysis identifies responder populations, improving
PIS stratification

4. Hyperparameter validation: Optimal onset delays and durations validated against experi-
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mental ground truth

This creates a learning health system where observational and experimental evidence continuously
refine each other.

14.6 Output: Validated Outcome Labels

The two-stage pipeline produces validated outcome labels combining observational and ex-
perimental evidence. Table 32 shows the data elements captured for each treatment-outcome
pair.

Table 32: Validated outcome label data structure.

Component Field Description Example

Identification Treatment Intervention name and dose Vitamin D 2000 IU
Outcome Health outcome measured Depression Severity

Stage 1
(Observational)

Δ𝑜𝑏𝑠 Observational effect size −12%

CI𝑜𝑏𝑠 95% confidence interval [−15%, −9%]
𝑁𝑜𝑏𝑠 Number of participants 45,000
PIS Predictor Impact Score 0.72

Stage 2
(Experimental)

Δ𝑒𝑥𝑝 Randomized trial effect −8%

CI𝑒𝑥𝑝 Trial confidence interval [−12%, −4%]
𝑁𝑒𝑥𝑝 Trial participants 3,000
Trial ID Registry identifier DFDA-VIT-D-001

Combined Evidence Grade Validation status Validated/Promis-
ing/Signal

Causal
Confidence

Probability of true effect 0-1 scale

Evidence grades:

• Validated: Confirmed by pragmatic RCT (p < 0.05, consistent direction)
• Promising: High PIS (>0.6), awaiting or in trial
• Signal: Moderate PIS (0.3-0.6), hypothesis only

15 Limitations and How They’re Addressed
The two-stage design addresses the fundamental limitations of purely observational pharmacovigilance
while acknowledging residual constraints.

15.1 Fundamental Limitations: Observational Stage

These limitations apply to Stage 1 (observational analysis) but are addressed by Stage 2 (pragmatic
trials):
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Limitation Stage 1 Status Stage 2 Resolution

Cannot prove
causation

Hypothesis only Randomization establishes causation

Cannot replace RCTs Generates candidates Pragmatic trials ARE simplified RCTs
Cannot handle
strong confounding

Confounding by indication Randomization eliminates confounding

Cannot generalize
beyond population

Self-selected trackers Pragmatic trials use real-world
populations

15.2 Methodological Weaknesses: Addressed by Two-Stage Design

Weakness Stage 1 Impact Two-Stage Resolution

Arbitrary baseline
definition

Acceptable for signal ranking Trial uses randomized comparison, no
baseline needed

Hyperparameter
overfitting

May inflate some correlations Trial confirms true effect, calibrates models

Self-selection bias Non-representative sample Pragmatic trials embed in routine care
Measurement error Self-report limitations Trials can use objective endpoints
Hawthorne effect Tracking changes behavior Trials embedded in normal care minimize

this
Multiple testing Millions of comparisons Only top signals proceed to trial (TPS

filter)
Temporal
confounding

Seasonal/life event effects Randomization eliminates systematic bias

Confounding by
indication

Sicker patients take more
treatment

Randomization balances severity

15.3 Residual Limitations

Even with the two-stage design, certain limitations remain:

1. Resource constraints: Cannot trial all promising signals; prioritization required
2. External validity: Pragmatic trial populations still may not represent all subgroups
3. Rare outcomes: Very rare adverse events may require larger observational signals
4. Behavioral interventions: Some treatments (diet, exercise) difficult to blind
5. Long-term effects: Pragmatic trials typically 6-12 months; decades-long effects require

observational follow-up
6. Interaction effects: Two-way drug interactions testable; higher-order interactions remain

observational

15.4 What This Framework CAN Now Do

With pragmatic trial integration, the complete framework can:

1. Establish causation: For high-priority signals, randomization proves causal relationships
2. Generate validated outcome labels: Quantitative effect sizes with experimental backing
3. Scale discovery: Analyze millions of pairs observationally, confirm thousands experimentally
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4. Continuous validation: Learning loop improves both observational and experimental
components

5. Enable precision medicine: Subgroup analyses identify responders vs. non-responders
6. Inform regulatory decisions: Validated labels provide evidence for treatment recommenda-

tions
7. Reduce research waste: Focus expensive trials on signals most likely to confirm

16 Implementation Guide

16.1 System Architecture

The framework consists of five sequential processing layers:

1. Data Ingestion Layer: Collects measurements from wearables, health apps, EHR/FHIR
systems, manual entry, and environmental sensors

2. Measurement Normalization: Standardizes units, timestamps, deduplicates records, and
attributes data provenance

3. Variable Ontology: Assigns semantic categories, default temporal parameters (𝛿, 𝜏), and
filling value logic

4. Relationship Analysis Engine: Generates predictor-outcome pairs, performs temporal
alignment, computes correlations, and optimizes hyperparameters

5. Population Aggregation: Combines individual N-of-1 analyses, computes confidence inter-
vals, detects heterogeneity and subgroups

6. Report Generation: Produces outcome labels, treatment rankings, and safety/efficacy
signals

Complete implementation details, database schemas, and reference code are available in the supple-
mentary materials repository.

16.2 Core Algorithm: Pair Generation

Algorithm 1 (Temporal Pair Generation): Given predictor measurements 𝑃 = {(𝑡𝑃
𝑗 , 𝑝𝑗)} and

outcome measurements 𝑂 = {(𝑡𝑂
𝑘 , 𝑜𝑘)}, onset delay 𝛿, duration of action 𝜏, and optional filling value

𝑓:

Case 1 (Predictor has filling value): For each outcome measurement (𝑡𝑂
𝑘 , 𝑜𝑘):

𝑝𝑘 = {
1

|𝑊𝑘| ∑𝑗∈𝑊𝑘
𝑝𝑗 if 𝑊𝑘 ≠ ∅

𝑓 otherwise

where 𝑊𝑘 = {𝑗 ∶ 𝑡𝑂
𝑘 − 𝛿 − 𝜏 < 𝑡𝑃

𝑗 ≤ 𝑡𝑂
𝑘 − 𝛿}. Output pair (𝑝𝑘, 𝑜𝑘).

Case 2 (No filling value): For each predictor measurement (𝑡𝑃
𝑗 , 𝑝𝑗):

𝑜𝑗 = 1
|𝑊𝑗|

∑
𝑘∈𝑊𝑗

𝑜𝑘

where 𝑊𝑗 = {𝑘 ∶ 𝑡𝑃
𝑗 + 𝛿 ≤ 𝑡𝑂

𝑘 < 𝑡𝑃
𝑗 + 𝛿 + 𝜏}. Output pair (𝑝𝑗, 𝑜𝑗) only if 𝑊𝑗 ≠ ∅.
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16.3 Core Algorithm: Baseline Separation

Algorithm 2 (Baseline/Follow-up Partition): Given aligned pairs {(𝑝𝑖, 𝑜𝑖)}𝑛
𝑖=1:

1. Compute predictor mean: ̄𝑝 = 1
𝑛 ∑𝑛

𝑖=1 𝑝𝑖
2. Partition into baseline 𝐵 = {(𝑝𝑖, 𝑜𝑖) ∶ 𝑝𝑖 < ̄𝑝} and follow-up 𝐹 = {(𝑝𝑖, 𝑜𝑖) ∶ 𝑝𝑖 ≥ ̄𝑝}
3. Compute outcome means: 𝜇𝐵 = 𝔼[𝑜 ∣ (𝑝, 𝑜) ∈ 𝐵] and 𝜇𝐹 = 𝔼[𝑜 ∣ (𝑝, 𝑜) ∈ 𝐹 ]
4. Return percent change: Δ = 𝜇𝐹−𝜇𝐵

𝜇𝐵
× 100

16.4 Core Algorithm: Predictor Impact Score

def calculate_user_pis(correlation, statistical_significance, z_score,
interest_factor, aggregate_pis):

"""
Calculate user-level PIS for individual N-of-1 analysis.

PIS_user = |r| × S × �_z × �_temporal × f_interest + PIS_agg
"""
Z_REF = 2 # Reference z-score (significance threshold)

# Strength: absolute correlation
r = abs(correlation.forward_pearson)

# Effect magnitude: normalized z-score factor
phi_z = abs(z_score) / (abs(z_score) + Z_REF) if z_score else 0.5

# Temporality: forward vs reverse correlation ratio
r_fwd = abs(correlation.forward_pearson)
r_rev = abs(correlation.reverse_pearson)
phi_temporal = r_fwd / (r_fwd + r_rev) if (r_fwd + r_rev) > 0 else 0.5

# Composite user-level score
radar = r * statistical_significance * phi_z * phi_temporal * interest_factor
radar += aggregate_pis

return round(radar, 4)

def calculate_aggregate_pis(correlation, n_users, n_pairs,
high_outcome_change, low_outcome_change,
weighted_avg_vote, gradient_coefficient):

"""
Calculate population-level aggregate PIS.

PIS_agg = |r_forward| × w × �_users × �_pairs × �_change × �_gradient
"""
SIGNIFICANT_USERS = 10
SIGNIFICANT_PAIRS = 100
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SIGNIFICANT_CHANGE_SPREAD = 10

# Strength: absolute forward correlation
r_forward = abs(correlation.forward_pearson)

# Consistency: user saturation
user_saturation = 1 - exp(-n_users / SIGNIFICANT_USERS)

# Consistency: pair saturation
pair_saturation = 1 - exp(-n_pairs / SIGNIFICANT_PAIRS)

# Clinical significance: change spread saturation
change_spread = abs(high_outcome_change - low_outcome_change)
if change_spread == 0:

change_spread = 1 # Prevent zero PIS
change_saturation = 1 - exp(-change_spread / SIGNIFICANT_CHANGE_SPREAD)

# Biological gradient: dose-response
gradient_factor = min(gradient_coefficient, 1.0) # Cap at 1.0

# Composite aggregate score
radar = (r_forward * weighted_avg_vote * user_saturation *

pair_saturation * change_saturation * gradient_factor)

return round(radar, 4)

def calculate_z_score(outcome_percent_change, baseline_rsd):
"""
Calculate z-score: effect magnitude normalized by baseline variability.

z = |Δ%| / RSD_baseline

z > 2 indicates p < 0.05 (statistically significant)
"""
if baseline_rsd and baseline_rsd > 0:

return round(abs(outcome_percent_change) / baseline_rsd, 2)
return None

def calculate_temporality_factor(forward_correlation, reverse_correlation):
"""
Calculate temporality factor: evidence for forward causation.

�_temporal = |r_forward| / (|r_forward| + |r_reverse|)

Returns 0.5 if ambiguous, approaches 1 if forward dominates.
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"""
r_fwd = abs(forward_correlation)
r_rev = abs(reverse_correlation)
if r_fwd + r_rev == 0:

return 0.5 # No evidence either way
return round(r_fwd / (r_fwd + r_rev), 4)

def calculate_percent_change_from_baseline(baseline_mean, followup_mean,
is_percent_unit=False):

"""
Calculate percent change from baseline.

Δ% = ((followup - baseline) / baseline) × 100
"""
if baseline_mean == 0 or is_percent_unit:

return round(followup_mean - baseline_mean, 1)
return round((followup_mean - baseline_mean) / baseline_mean * 100, 1)

def calculate_interest_factor(predictor_var, outcome_var):
"""
Calculate interest factor penalizing spurious variable pairs.

f_interest = f_predictor × f_outcome × f_pair
"""
factor = 1.0

# Predictor-specific penalties
if predictor_var.is_test_variable():

factor /= 2
if predictor_var.is_app_or_website():

factor /= 2
if predictor_var.is_address():

factor /= 2

# Outcome-specific penalties
if outcome_var.is_test_variable():

factor /= 2
if not outcome_var.is_outcome():

factor /= 2

# Pair appropriateness
if not predictor_var.is_predictor():

factor /= 2
if is_illogical_category_pair(predictor_var, outcome_var):

factor /= 10

47



return factor

16.5 Database Schema (Key Tables)

-- Variables (predictors, outcomes, etc.)
CREATE TABLE variables (

id INT PRIMARY KEY,
name VARCHAR(255),
variable_category_id INT,
default_unit_id INT,
filling_value FLOAT,
filling_type ENUM('zero', 'value', 'none', 'interpolation'),
onset_delay INT, -- seconds, default delay before effect
duration_of_action INT, -- seconds, how long effect persists
outcome BOOLEAN, -- is this an outcome variable?
predictor_only BOOLEAN, -- can only be a predictor (e.g., weather)
valence ENUM('positive', 'negative', 'neutral'), -- interpretation of higher values
is_goal BOOLEAN, -- something users want to optimize
controllable BOOLEAN, -- user can directly modify
boring BOOLEAN, -- filter flag for uninteresting variables
predictor BOOLEAN, -- can influence outcomes
optimal_value_message VARCHAR(500), -- pre-computed recommendation text
best_predictor_variable_id INT, -- strongest predictor for this outcome
best_outcome_variable_id INT -- most affected outcome by this predictor

);

-- Measurements
CREATE TABLE measurements (

id BIGINT PRIMARY KEY,
user_id BIGINT,
variable_id INT,
value FLOAT,
unit_id INT,
start_time TIMESTAMP,
source_id INT

);

-- Individual variable relationships (per-user N-of-1 analyses)
-- Contains correlation coefficients, effect sizes, PIS scores, and Bradford Hill metrics
CREATE TABLE user_variable_relationships (

id BIGINT PRIMARY KEY,
user_id BIGINT,
predictor_variable_id INT,
outcome_variable_id INT,

-- Correlation coefficients
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forward_pearson_correlation_coefficient FLOAT, -- Pearson r
reverse_pearson_correlation_coefficient FLOAT, -- reverse r (for temporality)
forward_spearman_correlation_coefficient FLOAT, -- Spearman r (robust)
predictive_pearson_correlation_coefficient FLOAT, -- with optimized params

-- Temporal parameters
onset_delay INT, -- optimized delay (seconds)
duration_of_action INT, -- optimized duration (seconds)
onset_delay_with_strongest_pearson_correlation INT, -- best delay found
correlations_over_delays TEXT, -- JSON: r values for each tested delay
correlations_over_durations TEXT, -- JSON: r values for each tested duration

-- Effect size metrics
outcome_follow_up_percent_change_from_baseline FLOAT, -- Δ%
average_outcome FLOAT, -- mean outcome
average_outcome_following_high_predictor FLOAT, -- outcome when predictor > mean
average_outcome_following_low_predictor FLOAT, -- outcome when predictor < mean
average_daily_high_predictor FLOAT, -- high predictor value
average_daily_low_predictor FLOAT, -- low predictor value
predicts_high_outcome_change INT, -- % change at high predictor
predicts_low_outcome_change INT, -- % change at low predictor

-- Baseline/treatment metrics
outcome_baseline_average FLOAT,
outcome_baseline_standard_deviation FLOAT,
outcome_baseline_relative_standard_deviation FLOAT, -- RSD
outcome_follow_up_average FLOAT,
predictor_baseline_average_per_day FLOAT, -- non-treatment daily avg
predictor_treatment_average_per_day FLOAT, -- treatment daily avg
predictor_baseline_average_per_duration_of_action FLOAT,
predictor_treatment_average_per_duration_of_action FLOAT,

-- Statistical significance
z_score FLOAT, -- effect magnitude / baseline RSD
p_value FLOAT,
t_value FLOAT,
critical_t_value FLOAT,
confidence_interval FLOAT,
statistical_significance FLOAT,

-- Optimal values for precision dosing
value_predicting_high_outcome FLOAT, -- V_high
value_predicting_low_outcome FLOAT, -- V_low
grouped_predictor_value_closest_to_value_predicting_high_outcome FLOAT,
grouped_predictor_value_closest_to_value_predicting_low_outcome FLOAT,

-- Quality metrics
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predicted_impact_score FLOAT, -- PIS_user
number_of_pairs INT,
predictor_changes INT, -- variance in predictor
outcome_changes INT, -- variance in outcome

-- Relationship classification
strength_level ENUM('VERY STRONG', 'STRONG', 'MODERATE', 'WEAK', 'VERY WEAK'),
confidence_level ENUM('HIGH', 'MEDIUM', 'LOW'),
relationship ENUM('POSITIVE', 'NEGATIVE', 'NONE'),

-- Quality filters
boring BOOLEAN,
outcome_is_goal BOOLEAN,
predictor_is_controllable BOOLEAN,
plausibly_causal BOOLEAN,
obvious BOOLEAN,
interesting_variable_category_pair BOOLEAN,

-- User feedback
usefulness_vote INT, -- -1, 0, 1
causality_vote INT, -- -1, 0, 1
number_of_up_votes INT,
number_of_down_votes INT

);

-- Population-level variable relationships (aggregated N-of-1 analyses)
-- Combines individual analyses across participants for population-level estimates
CREATE TABLE global_variable_relationships (

id BIGINT PRIMARY KEY,
predictor_variable_id INT,
outcome_variable_id INT,

-- Aggregated correlation coefficients
forward_pearson_correlation_coefficient FLOAT,
reverse_pearson_correlation_coefficient FLOAT,
predictive_pearson_correlation_coefficient FLOAT,
population_trait_pearson_correlation_coefficient FLOAT, -- user-level avg correlation

-- Sample size metrics
number_of_users INT, -- N participants
number_of_correlations INT, -- individual analyses aggregated
number_of_pairs INT, -- total pairs across all users

-- Aggregated effect sizes
outcome_follow_up_percent_change_from_baseline FLOAT,
aggregate_predicted_impact_score FLOAT, -- PIS_agg
gradient_coefficient FLOAT, -- �_gradient: dose-response
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confidence_level ENUM('high', 'medium', 'low'),
up_votes INT,
down_votes INT,
-- Population-level optimal values for precision dosing
average_daily_high_predictor FLOAT, -- Avg predictor in upper 51% of spread
average_daily_low_predictor FLOAT, -- Avg predictor in lower 49% of spread
value_predicting_high_outcome FLOAT, -- Population avg V_high
value_predicting_low_outcome FLOAT -- Population avg V_low

);

17 Regulatory Considerations

17.1 Positioning Relative to RCTs

This framework is not intended to:

• Replace RCTs for regulatory approval
• Provide definitive causal proof
• Serve as sole basis for clinical decisions

This framework is intended to:

• Complement spontaneous reporting with quantitative signals
• Prioritize hypotheses for experimental investigation
• Provide continuous post-market surveillance
• Enable real-time safety signal detection
• Generate evidence for benefit-risk reassessment

17.2 Evidence Hierarchy Integration

Evidence Level Source Role of This Framework

Level I RCTs,
Meta-analyses

Gold standard for approval

Level II Cohort studies This framework provides quantitative
RWE

Level III Case-control Traditional pharmacovigilance
Level IV Case series Spontaneous reports (FAERS)

17.3 FDA Real-World Evidence Framework Alignment

The 21st Century Cures Act mandates FDA evaluation of RWE. This framework supports:

• FDA Sentinel System: Provides complementary patient-reported data
• Post-market commitments: Continuous safety monitoring
• Label updates: Quantitative basis for efficacy/safety updates
• Comparative effectiveness: Treatment rankings within classes
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18 Validation Framework

18.1 The Critical Question

The ultimate test of PIS validity: Do high-PIS relationships replicate in RCTs more often
than low-PIS ones?

Until this validation is performed, PIS should be treated as a theoretically-motivated heuristic, not
a validated predictive tool.

18.2 Proposed Validation Study

Design: Retrospective comparison of PIS predictions against published RCT results.

Method: 1. Identify treatment-outcome pairs where both (a) we have sufficient observational
data to compute PIS, and (b) RCT evidence exists 2. Compute PIS for each pair using only data
collected before RCT publication 3. Compare PIS rankings to RCT effect sizes 4. Assess calibration:
Do high-PIS pairs show larger RCT effects?

Success Metrics:

• Discrimination: AUC for PIS predicting “RCT shows significant effect” (yes/no)
• Calibration: Correlation between PIS and RCT effect size
• Prioritization value: Proportion of high-PIS pairs validated by RCT vs. low-PIS pairs

Expected Outcomes:

• If PIS � 0.5 pairs have RCT validation rate of 60%+ and PIS < 0.1 pairs have rate < 20%,
the metric has practical utility

• If no discrimination, saturation constants need recalibration or the approach needs fundamental
revision

18.3 Known Limitations Requiring Validation

1. Confounding by indication: Does the temporality factor adequately address reverse
causation in treatment contexts?

2. Saturation constant sensitivity: How robust are rankings to ±50% changes in N_sig,
n_sig?

3. Population generalizability: Do PIS values from health-tracker users predict effects in
general populations?

19 Future Directions

19.1 Methodological Improvements

1. Causal discovery algorithms: Implement PC algorithm, FCI, or GES for graph structure
learning

2. Propensity score integration: Covariate adjustment for measured confounders
3. Bayesian hierarchical models: More principled cross-participant pooling with uncertainty

quantification
4. Time-varying effects: Model how relationships change over time (effect modification)
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5. Subgroup analysis: Identify responder vs. non-responder populations using heterogeneity
metrics

6. Multiple testing correction: Benjamini-Hochberg for family-wise error control across
millions of pairs

7. Sensitivity analysis: E-values or other methods to quantify robustness to unmeasured
confounding

8. Causal mediation: Identify mechanisms through which treatments affect outcomes
9. Drug-drug interactions: Detect combination effects and synergies

19.2 Validation Priorities

1. Retrospective RCT comparison: Compare PIS predictions to published trial results
(highest priority)

2. Prospective prediction study: Pre-register PIS predictions, validate against future RCTs
3. Domain expert review: Have clinicians and pharmacologists assess biological plausibility

of top PIS relationships
4. Sensitivity benchmarking: Test robustness to different saturation constants and aggregation

methods

19.3 Implementation Enhancements

1. Real-time signal detection: Automated alerts when new high-PIS relationships emerge
2. Confidence intervals for PIS: Bootstrap or Bayesian intervals to quantify uncertainty
3. Interactive exploration: Tools for users to explore their individual PIS relationships
4. API access: Enable researchers to query PIS data programmatically

20 Conclusion
We have presented a comprehensive two-stage framework for generating validated outcome
labels from real-world health data. Key contributions include:

1. Stage 1: Scalable signal detection: Aggregated N-of-1 observational analysis processes
millions of treatment-outcome pairs at ~$0.10/patient, generating ranked hypotheses through
the Predictor Impact Score

2. Stage 2: Causal confirmation: Pragmatic randomized trials following the RECOV-
ERY/ADAPTABLE model confirm top signals at ~$500 (95% CI: $400-$2.50K)/patient (82x
(95% CI: 50x-94.1x) cheaper than traditional trials) while eliminating confounding

3. Bradford Hill operationalization: Six of nine causality criteria quantified in composite
scoring system

4. Trial Priority Score: Principled prioritization of which signals warrant experimental
confirmation

5. Validated outcome labels: Three-tier evidence grading (Validated, Promising, Signal) with
both observational and experimental effect sizes

6. Learning health system: Feedback loop where trial results continuously calibrate observa-
tional models

This two-stage design directly addresses the fundamental limitations of purely observational phar-
macovigilance. Confounding by indication, self-selection bias, and inability to prove causation are
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all resolved through Stage 2 randomization for high-priority signals, while Stage 1 maintains the
scale and cost advantages necessary for comprehensive monitoring.

This framework represents the FDA of the Future, a decentralized system that:

• Receives continuous real-world evidence streams from millions of participants
• Generates ranked treatment-outcome hypotheses through automated observational analysis
• Confirms top signals through embedded pragmatic trials at 82x (95% CI: 50x-94.1x) lower

cost than traditional methods
• Publishes validated outcome labels with quantitative effect sizes and evidence grades
• Maintains treatment rankings updated in real-time with experimental backing
• Enables precision medicine through personalized optimal value calculations
• Operates transparently with open-source methodology and reproducible analyses

The technology exists. The methodology is sound. The data is available. The pragmatic trial
model is proven. We present this framework not as a replacement for regulatory bodies, but as the
complete infrastructure (from passive data collection to validated causal claims) that they will need
to fulfill their mission in an era of ubiquitous health data. What remains is the institutional will to
build it.

21 Appendix A: Effect Size Classification

Absolute Correlation Classification

‖𝑟‖ ≥ 0.8 Very Strong
0.6 ≤ ‖𝑟‖ < 0.8 Strong
0.4 ≤ ‖𝑟‖ < 0.6 Moderate
0.2 ≤ ‖𝑟‖ < 0.4 Weak
‖𝑟‖ < 0.2 Very Weak

22 Appendix B: Variable Category Defaults

Category Onset Delay Duration of Action Filling Value

Treatments 1,800s (30 min) 86,400s (1 day) 0
Foods 1,800s (30 min) 864,000s (10 days) 0
Emotions 0 86,400s (1 day) None
Symptoms 0 86,400s (1 day) None
Vital Signs 0 86,400s (1 day) None
Sleep 0 86,400s (1 day) None
Physical Activity 0 86,400s (1 day) None
Environment 0 86,400s (1 day) None

23 Appendix C: Glossary
• Predictor Variable: The independent variable hypothesized to influence the outcome (e.g.,

treatment, food, activity). Formerly called “cause variable.”
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• Outcome Variable: The dependent variable being measured for changes (e.g., symptom,
mood, biomarker). Formerly called “effect variable.”

• User Variable Relationship: A per-user N-of-1 analysis record containing correlation
coefficients, effect sizes (percent change from baseline), Predictor Impact Scores, and Bradford
Hill metrics for a specific predictor-outcome pair. Stored in user_variable_relationships
table.

• Global Variable Relationship: A population-level aggregation of user variable
relationships, combining individual N-of-1 analyses across participants. Stored in
global_variable_relationships table.

• Correlation Coefficient: The Pearson or Spearman statistical measure of linear/monotonic
association between predictor and outcome variables (a component of a variable relationship).

• Predictor Impact Score (PIS): Composite metric quantifying how much a predictor impacts
an outcome. Integrates correlation strength, statistical significance, z-score (effect magnitude),
temporality factor, and interest factor at the user level; adds consistency, plausibility, and
biological gradient at the aggregate level. Higher scores indicate predictors with greater, more
reliable impact. Ranges from 0 to ~1.

• Onset Delay (𝛿): Time between predictor exposure and first observable outcome change
• Duration of Action (𝜏): Time window over which predictor influence on outcome persists
• Baseline Period: Measurements when predictor exposure is below participant’s average
• Follow-up Period: Measurements when predictor exposure is at or above participant’s

average
• Percent Change from Baseline (Δ%): Relative difference between follow-up and baseline

outcome means
• Z-Score: Effect magnitude normalized by baseline variability; z > 2 indicates statistical

significance
• Temporality Factor (𝜙temporal): Ratio of forward to total correlation, measuring evidence

for correct causal direction
• Filling Value: Default value imputed for missing measurements
• Outcome Label: A per-outcome document that ranks all treatments and predictors by their

quantitative effect size on a specific health outcome. Unlike traditional FDA drug labels (which
are per-drug and qualitative), outcome labels are per-outcome, quantitative, and dynamically
updated. They answer the question: “What works best for this condition?” See Section 7.5
for comparison with FDA labels.

• Treatment Ranking: Ordered list of treatments by efficacy or safety for a given outcome,
sorted by effect size with confidence weighting. Rankings include percent change from baseline,
confidence intervals, sample sizes, and Predictor Impact Scores. See Section 8 for ranking
methodology.

• Value Predicting High Outcome (𝑉high): The average predictor value observed when the
outcome exceeds its mean. Used for precision dosing recommendations. This is the “optimal
daily value” for achieving better outcomes.

• Value Predicting Low Outcome (𝑉low): The average predictor value observed when the
outcome is below its mean. Represents the predictor value associated with worse outcomes.

• Grouped Optimal Value: The nearest commonly-used dosing value to the calculated
optimal value, enabling practical recommendations (e.g., “400mg” instead of “412.7mg”)

• Optimal Value Spread (𝑉high − 𝑉low): The difference between high and low outcome
predictor values, indicating the magnitude of dose-response effect

• Precision Dosing: Personalized treatment recommendations based on an individual’s his-
torical optimal values, enabling targeted interventions at the dose most likely to produce
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beneficial outcomes
• Average Outcome Following High Predictor (𝑂̄high): Mean outcome value observed

following above-average predictor exposure
• Average Outcome Following Low Predictor (𝑂̄low): Mean outcome value observed

following below-average predictor exposure
• Predictor Baseline Average: Average predictor value during low-exposure (non-treatment)

periods
• Predictor Treatment Average: Average predictor value during high-exposure (treatment)

periods
• Valence: Whether higher values of a variable are inherently good (positive), bad (negative),

or context-dependent (neutral)
• Predictor Is Controllable: Flag indicating whether the user can directly modify this

predictor (e.g., supplements, food, activities)
• Outcome Is Goal: Flag indicating whether this outcome is something users want to optimize
• Plausibly Causal: Flag indicating whether a plausible biological mechanism exists for this

relationship
• Boring: Flag indicating relationships unlikely to interest users due to being uncontrollable,

non-goal, implausible, or obvious
• Interesting Variable Category Pair: Flag for category combinations that are typically

meaningful (e.g., Treatment → Symptom)
• Usefulness Vote: User rating (-1, 0, 1) on whether knowledge of a relationship is practically

useful
• Causality Vote: User rating (-1, 0, 1) on whether a plausible causal mechanism exists
• Correlations Over Delays: Stored correlation coefficients calculated with various onset

delay values for temporal optimization
• Correlations Over Durations: Stored correlation coefficients calculated with various

duration of action values
• Forward Spearman Correlation: Rank-based correlation coefficient that captures mono-

tonic relationships and is robust to outliers
• Optimal Value Confidence Interval: Uncertainty bounds around 𝑉high or 𝑉low, reflecting

reliability of the estimate based on sample size and variance
• Optimal Value Stability: Metric measuring how much the optimal value has changed over

time; stability < 0.8 indicates significant drift
• Adherence Score: Proportion of tracking days where actual predictor value was within

±20% of the recommended optimal value
• Dose-Response Detection Threshold: Criterion (|𝑉high − 𝑉low|/𝜎𝑃 < 0.5) below which no

meaningful dose-response exists
• Rolling Window Optimal Value: Optimal value calculated using only recent data (e.g., 90

days) rather than all historical data, useful when tolerance effects are expected

24 Appendix D: Worked Example

24.1 Example: Calculating Predictor Impact Score for “Magnesium → Sleep
Quality”

Given data (hypothetical):

• N = 47 users tracked both magnesium supplementation and sleep quality
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• n = 2,340 paired observations across all users
• Forward correlation: r_forward = 0.31
• Reverse correlation: r_reverse = 0.12
• Percent change from baseline: Δ% = +18.5% (sleep quality improved)
• Baseline RSD: 23%
• Community votes: 15 up, 2 down
• Effect spread: 22% (difference between high and low magnesium outcomes)

Step 1: Calculate z-score

𝑧 = |18.5%|
23%

= 0.80

Step 2: Calculate temporality factor

𝜙temporal = |0.31|
|0.31| + |0.12|

= 0.31
0.43

= 0.72

This suggests forward causation (magnesium → sleep) is more likely than reverse (poor sleep →
taking magnesium).

Step 3: Calculate saturation factors

• User saturation: 𝜙users = 1 − 𝑒−47/10 = 1 − 0.009 = 0.991
• Pair saturation: 𝜙pairs = 1 − 𝑒−2340/100 = 1 − 𝑒−23.4 ≈ 1.0
• Change saturation: 𝜙change = 1 − 𝑒−22/10 = 1 − 0.11 = 0.89

Step 4: Calculate plausibility weight

𝑤 = 15
15 + 2

= 0.88

Step 5: Compute aggregate PIS

PISagg = 0.31 × 0.88 × 0.991 × 1.0 × 0.89 × 0.72 = 0.17

Interpretation: PIS = 0.17 falls in the “weak evidence” range (0.1-0.3). The relationship shows:

• Modest correlation strength (r = 0.31)
• Good temporal evidence (� = 0.72, forward > reverse)
• Strong consistency (many users and pairs)
• High plausibility (community agrees mechanism is plausible)

Recommendation: This relationship warrants monitoring. As more data accumulates or if effect
size increases, it could become a candidate for experimental validation. The temporality factor is
encouraging. This doesn’t appear to be reverse causation.
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25 Appendix E: Analysis Workflow
1. Data ingestion: Collect measurements from all sources
2. Normalization: Standardize units, deduplicate
3. Variable assignment: Map to ontology, assign category defaults
4. Pair generation: Create predictor-outcome pairs with temporal alignment
5. Baseline separation: Partition by below/above average predictor exposure
6. Correlation calculation: Pearson, Spearman, forward/reverse
7. Hyperparameter optimization: Find optimal onset delay and duration
8. Effect size calculation: Percent change from baseline, z-score
9. Statistical testing: p-value, confidence intervals

10. Temporality assessment: Forward/reverse correlation ratio
11. Predictor Impact Score calculation: Composite PIS metric
12. User variable relationship storage: Save individual N-of-1 analyses
13. Population aggregation: Combine into global variable relationships
14. Report generation: Outcome labels, treatment rankings
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